Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CRISPRing into the woods.

Identifieur interne : 001E69 ( Main/Exploration ); précédent : 001E68; suivant : 001E70

CRISPRing into the woods.

Auteurs : Chung-Jui Tsai [États-Unis] ; Liang-Jiao Xue [États-Unis]

Source :

RBID : pubmed:26357840

Descripteurs français

English descriptors

Abstract

The CRISPR/Cas9 technology is a welcome breakthrough for genome editing, owing to its precision, efficiency, versatility and ease of adoption. We recently reported the first application of CRISPR/Cas9 for biallelic mutations in stably transformed Populus, extending the species range of this powerful technology to woody perennials. An underappreciated obstacle in genome editing of outcrossing species is the frequent occurrence of sequence polymorphisms that can render CRISPR/Cas9 unproductive. We discuss experimental evidence as well as genome-wide computational analysis to demonstrate the sensitivity of CRISPR/Cas9 to allelic heterozygosity, and highlight tools and strategies that can help deal with such sequence polymorphisms. With its specificity, CRISPR/Cas9 offers a less equivocal means than previous approaches for discerning functional redundancy of paralogous genes that are prevalent in plant genomes. Continuing improvements of the CRISPR/Cas9 system for multiplex genome engineering should facilitate these efforts. The paradigm shift brought about by CRISPR/Cas9 promises to accelerate not only basic research but also applied crop improvement progress.

DOI: 10.1080/21645698.2015.1091553
PubMed: 26357840
PubMed Central: PMC5033219


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">CRISPRing into the woods.</title>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Warnell School of Forestry and Natural Resources, and Department of Genetics; University of Georgia ; Athens , GA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>a Warnell School of Forestry and Natural Resources, and Department of Genetics; University of Georgia ; Athens </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Xue, Liang Jiao" sort="Xue, Liang Jiao" uniqKey="Xue L" first="Liang-Jiao" last="Xue">Liang-Jiao Xue</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Warnell School of Forestry and Natural Resources, and Department of Genetics; University of Georgia ; Athens , GA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>a Warnell School of Forestry and Natural Resources, and Department of Genetics; University of Georgia ; Athens </wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26357840</idno>
<idno type="pmid">26357840</idno>
<idno type="doi">10.1080/21645698.2015.1091553</idno>
<idno type="pmc">PMC5033219</idno>
<idno type="wicri:Area/Main/Corpus">001B19</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B19</idno>
<idno type="wicri:Area/Main/Curation">001B19</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B19</idno>
<idno type="wicri:Area/Main/Exploration">001B19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">CRISPRing into the woods.</title>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Warnell School of Forestry and Natural Resources, and Department of Genetics; University of Georgia ; Athens , GA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>a Warnell School of Forestry and Natural Resources, and Department of Genetics; University of Georgia ; Athens </wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Xue, Liang Jiao" sort="Xue, Liang Jiao" uniqKey="Xue L" first="Liang-Jiao" last="Xue">Liang-Jiao Xue</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Warnell School of Forestry and Natural Resources, and Department of Genetics; University of Georgia ; Athens , GA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>a Warnell School of Forestry and Natural Resources, and Department of Genetics; University of Georgia ; Athens </wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">GM crops & food</title>
<idno type="eISSN">2164-5701</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CRISPR-Cas Systems (MeSH)</term>
<term>Genetic Engineering (methods)</term>
<term>Genome, Plant (MeSH)</term>
<term>Heterozygote (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Génie génétique (méthodes)</term>
<term>Génome végétal (MeSH)</term>
<term>Hétérozygote (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Populus (génétique)</term>
<term>Systèmes CRISPR-Cas (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetic Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Génie génétique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>CRISPR-Cas Systems</term>
<term>Genome, Plant</term>
<term>Heterozygote</term>
<term>Plants, Genetically Modified</term>
<term>Polymorphism, Single Nucleotide</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome végétal</term>
<term>Hétérozygote</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Systèmes CRISPR-Cas</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The CRISPR/Cas9 technology is a welcome breakthrough for genome editing, owing to its precision, efficiency, versatility and ease of adoption. We recently reported the first application of CRISPR/Cas9 for biallelic mutations in stably transformed Populus, extending the species range of this powerful technology to woody perennials. An underappreciated obstacle in genome editing of outcrossing species is the frequent occurrence of sequence polymorphisms that can render CRISPR/Cas9 unproductive. We discuss experimental evidence as well as genome-wide computational analysis to demonstrate the sensitivity of CRISPR/Cas9 to allelic heterozygosity, and highlight tools and strategies that can help deal with such sequence polymorphisms. With its specificity, CRISPR/Cas9 offers a less equivocal means than previous approaches for discerning functional redundancy of paralogous genes that are prevalent in plant genomes. Continuing improvements of the CRISPR/Cas9 system for multiplex genome engineering should facilitate these efforts. The paradigm shift brought about by CRISPR/Cas9 promises to accelerate not only basic research but also applied crop improvement progress. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26357840</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2164-5701</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>GM crops & food</Title>
<ISOAbbreviation>GM Crops Food</ISOAbbreviation>
</Journal>
<ArticleTitle>CRISPRing into the woods.</ArticleTitle>
<Pagination>
<MedlinePgn>206-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/21645698.2015.1091553</ELocationID>
<Abstract>
<AbstractText>The CRISPR/Cas9 technology is a welcome breakthrough for genome editing, owing to its precision, efficiency, versatility and ease of adoption. We recently reported the first application of CRISPR/Cas9 for biallelic mutations in stably transformed Populus, extending the species range of this powerful technology to woody perennials. An underappreciated obstacle in genome editing of outcrossing species is the frequent occurrence of sequence polymorphisms that can render CRISPR/Cas9 unproductive. We discuss experimental evidence as well as genome-wide computational analysis to demonstrate the sensitivity of CRISPR/Cas9 to allelic heterozygosity, and highlight tools and strategies that can help deal with such sequence polymorphisms. With its specificity, CRISPR/Cas9 offers a less equivocal means than previous approaches for discerning functional redundancy of paralogous genes that are prevalent in plant genomes. Continuing improvements of the CRISPR/Cas9 system for multiplex genome engineering should facilitate these efforts. The paradigm shift brought about by CRISPR/Cas9 promises to accelerate not only basic research but also applied crop improvement progress. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>a Warnell School of Forestry and Natural Resources, and Department of Genetics; University of Georgia ; Athens , GA USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Liang-Jiao</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>a Warnell School of Forestry and Natural Resources, and Department of Genetics; University of Georgia ; Athens , GA USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>GM Crops Food</MedlineTA>
<NlmUniqueID>101572655</NlmUniqueID>
<ISSNLinking>2164-5698</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D064113" MajorTopicYN="Y">CRISPR-Cas Systems</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006579" MajorTopicYN="N">Heterozygote</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">biallelic mutation</Keyword>
<Keyword MajorTopicYN="N">breeding</Keyword>
<Keyword MajorTopicYN="N">flavonoid</Keyword>
<Keyword MajorTopicYN="N">genome editing</Keyword>
<Keyword MajorTopicYN="N">heterozygous</Keyword>
<Keyword MajorTopicYN="N">lignin</Keyword>
<Keyword MajorTopicYN="N">single nucleotide polymorphism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26357840</ArticleId>
<ArticleId IdType="doi">10.1080/21645698.2015.1091553</ArticleId>
<ArticleId IdType="pmc">PMC5033219</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2014 Nov;166(3):1292-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Jan;26(1):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24443519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2008 Jul 25;4(7):e1000113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18654614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Mar;32(3):279-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24463574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jan;66(1):47-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25970829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Aug;12(6):797-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Sep;55(9):1669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25016610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2015 Mar 12;15:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25879861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1998 Apr;1(2):142-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2015 Jan-Feb;33(1):41-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25536441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Jun 10;12(6):e1001877</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24915127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2008 Aug;17(4):679-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17929189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Sep 24;10:452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19775472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 20;5:12217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Aug;8(8):1288-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25749112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 May;7(5):923-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24482433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Sep;8(9):1428-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26057235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):370-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Oct;12(8):1066-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24975279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Feb;14 (2):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26132805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):845-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Apr;32(4):347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24584096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Oct;46(10):1089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014;42(17):10903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25200087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2014;83:409-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24606144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 May;14 (5):903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18367720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3570-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25733849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40715</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Sep;7(9):1494-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24719468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):9-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2003 Jul;1(4):253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Aug 17;337(6096):816-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):945-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Oct;66(20):6507-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26246616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316744</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</region>
<name sortKey="Xue, Liang Jiao" sort="Xue, Liang Jiao" uniqKey="Xue L" first="Liang-Jiao" last="Xue">Liang-Jiao Xue</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26357840
   |texte=   CRISPRing into the woods.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26357840" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020